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Preface

Linear algebra has in recent years become an essential part of the mathematical background required by
mathematicians and mathematics teachers, engineers, computer scientists, physicists, economists, and statis-
ticians, among others. This requirement reflects the importance and wide applications of the subject matter.

This book is designed for use as a textbook for a formal course in linear algebra or as a supplement to all
current standard texts. It aims to present an introduction to linear algebra which will be found helpful to all
readers regardless of their fields of specification. More material has been included than can be covered in most
first courses. This has been done to make the book more flexible, to provide a useful book of reference, and to
stimulate further interest in the subject.

Each chapter begins with clear statements of pertinent definitions, principles, and theorems together with
illustrative and other descriptive material. This is followed by graded sets of solved and supplementary
problems. The solved problems serve to illustrate and amplify the theory, and to provide the repetition of basic
principles so vital to effective learning. Numerous proofs, especially those of all essential theorems, are
included among the solved problems. The supplementary problems serve as a complete review of the material
of each chapter.

The first three chapters treat vectors in Euclidean space, matrix algebra, and systems of linear equations.
These chapters provide the motivation and basic computational tools for the abstract investigations of vector
spaces and linear mappings which follow. After chapters on inner product spaces and orthogonality and on
determinants, there is a detailed discussion of eigenvalues and eigenvectors giving conditions for representing a
linear operator by a diagonal matrix. This naturally leads to the study of various canonical forms, specifically,
the triangular, Jordan, and rational canonical forms. Later chapters cover linear functions and the dual space V*,
and bilinear, quadratic, and Hermitian forms. The last chapter treats linear operators on inner product spaces.

The main changes in the sixth edition are that some parts in Appendix D have been added to the main part of
the text, that is, Chapter Four and Chapter Eight. There are also many additional solved and supplementary
problems.

Finally, we wish to thank the staff of the McGraw-Hill Schaum’s Outline Series, especially Diane Grayson,
for their unfailing cooperation.

SEYMOUR LIPSCHUTZ
MARC LARS LIPSON
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Vectors in R" and C",
Spatial Vectors

1.1 Introduction

There are two ways to motivate the notion of a vector: one is by means of lists of numbers and subscripts,
and the other is by means of certain objects in physics. We discuss these two ways below.

Here we assume the reader is familiar with the elementary properties of the field of real numbers,
denoted by R. On the other hand, we will review properties of the field of complex numbers, denoted by
C. In the context of vectors, the elements of our number fields are called scalars.

Although we will restrict ourselves in this chapter to vectors whose elements come from R and then
from C, many of our operations also apply to vectors whose entries come from some arbitrary field K.

Lists of Numbers
Suppose the weights (in pounds) of eight students are listed as follows:
156, 125, 145, 134, 178, 145, 162, 193
One can denote all the values in the list using only one symbol, say w, but with different subscripts; that is,
Wi, W, W3, Wy, W5, W, Wy, W
Observe that each subscript denotes the position of the value in the list. For example,
w; = 156, the first number, w, = 125, the second number, ...
Such a list of values,
w= (W, Wy, Ws,...,Wg)

is called a linear array or vector.

Vectors in Physics

Many physical quantities, such as temperature and speed, possess only “magnitude.” These quantities can
be represented by real numbers and are called scalars. On the other hand, there are also quantities, such as
force and velocity, that possess both “magnitude” and “direction.” These quantities, which can be
represented by arrows having appropriate lengths and directions and emanating from some given reference
point O, are called vectors.

Now we assume the reader is familiar with the space R® where all the points in space are represented by
ordered triples of real numbers. Suppose the origin of the axes in R? is chosen as the reference point O for
the vectors discussed above. Then every vector is uniquely determined by the coordinates of its endpoint,
and vice versa.

There are two important operations, vector addition and scalar multiplication, associated with vectors in
physics. The definition of these operations and the relationship between these operations and the endpoints
of the vectors are as follows.
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(a+d,b+b,c+c)
-9

Z - Z

(ka, kb, kc)
 (a.b. 0) 'y"
b (@, b,c)
- 0 >
y y
X
(a) Vector Addition (b) Scalar Multiplication

Figure 1-1

(i) Vector Addition: The resultant u + v of two vectors u and v is obtained by the parallelogram law;
that is, u + v is the diagonal of the parallelogram formed by u and v. Furthermore, if (a,b,c) and
(d',b', ") are the endpoints of the vectors w and v, then (a + d’, b+ b, ¢+ ¢’) is the endpoint of the
vector u + v. These properties are pictured in Fig. 1-1(a).

(ii) Scalar Multiplication: The product ku of a vector u by a real number k is obtained by multiplying
the magnitude of u by k and retaining the same direction if £ > 0 or the opposite direction if k£ < 0.
Also, if (a, b, c¢) is the endpoint of the vector u, then (ka, kb, kc) is the endpoint of the vector ku. These
properties are pictured in Fig. 1-1(b).

Mathematically, we identify the vector u with its (a, b, ¢) and write u = (a, b, ¢). Moreover, we call the
ordered triple (a, b, c) of real numbers a point or vector depending upon its interpretation. We generalize
this notion and call an n-tuple (a;, a,,. . .,a,) of real numbers a vector. However, special notation may be
used for the vectors in R® called spatial vectors (Section 1.6).

1.2 Vectors in R”

The set of all n-tuples of real numbers, denoted by R”, is called n-space. A particular n-tuple in R”, say
u= (a17a27"'7an)

is called a point or vector. The numbers a; are called the coordinates, components, entries, or elements
of u. Moreover, when discussing the space R", we use the term scalar for the elements of R.

Two vectors, u and v, are equal, written u = v, if they have the same number of components and if the
corresponding components are equal. Although the vectors (1,2,3) and (2,3, 1) contain the same three
numbers, these vectors are not equal because corresponding entries are not equal.

The vector (0,0, ...,0) whose entries are all 0 is called the zero vector and is usually denoted by 0.

EXAMPLE 1.1

(a) The following are vectors:
(27 _5)’ (7)9)7 <0a030), (37475)

The first two vectors belong to R?, whereas the last two belong to R®. The third is the zero vector in R>.
(b) Find x,y,z such that (x —y, x+y, z— 1) = (4,2,3).

By definition of equality of vectors, corresponding entries must be equal. Thus,
x—y=4, x+y=2, z—1=3

Solving the above system of equations yields x =3, y = —1, z = 4.
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Column Vectors

Sometimes a vector in n-space R" is written vertically rather than horizontally. Such a vector is called a
column vector, and, in this context, the horizontally written vectors in Example 1.1 are called row vectors.
For example, the following are column vectors with 2,2, 3, and 3 components, respectively:

1.5

g e [0
2 I _4 I ) 3
—6 ~15

We also note that any operation defined for row vectors is defined analogously for column vectors.

1.3 Vector Addition and Scalar Multiplication

Consider two vectors u and v in R", say
u=(a,ay,...,a,) and v=(by,by,...,b,)

Their sum, written u + v, is the vector obtained by adding corresponding components from « and v. That is,
u+v=_(ay+by, ay+b,, ..., a,+b,)

The product, of the vector u by a real number k, written ku, is the vector obtained by multiplying each
component of u by k. That is,

ku=k(a,,a,,...,a,) = (ka,, ka,, ... ka,)

Observe that u + v and ku are also vectors in R”. The sum of vectors with different numbers of
components is not defined.
Negatives and subtraction are defined in R”" as follows:

—u=(-1)u and u—v=u+ (-0

The vector —u is called the negative of u, and u — v is called the difference of u and wv.
Now suppose we are given vectors u,, s, . .., u,, in R" and scalars k|, k,, . .. , k,, in R. We can multiply
the vectors by the corresponding scalars and then add the resultant scalar products to form the vector

v =kjuy + kuy + kyuz +--- +k,u,
Such a vector v is called a linear combination of the vectors u,,u,, ..., u,,.

EXAMPLE 1.2
(@) Letu=(2,4,-5) and v = (1,—6,9). Then

u+v=02+1, 44+ (-6), =5+9) =(3,-2,4)
Tu=(7(2),7(4),7(-5)) = (14,28, -35)
—v=(-1)(1,-6,9) = (—-1,6,-9)
3u—5v=(6,12,—15) 4+ (—5,30, —45) = (1,42, —60)
(b) The zero vector 0 = (0,0, ...,0) in R” is similar to the scalar O in that, for any vector u = (a,,4a,,...,a,).
u+0=(a;+0, a,+0, ..., a,+0)=(a,a,,...,a,) =u

2
(c) Letu= |: 3] and v =
—4

3 4 -9 -5
—1|. Then 2u — 3v = 6| + 3| = 9]1.
-2 -8 6 -2
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Basic properties of vectors under the operations of vector addition and scalar multiplication are
described in the following theorem.

THEOREM 1.1: For any vectors u, v, w in R" and any scalars k,k’ in R,
i w+v)+w=u+(v+w), V) k(u+v) = ku+ kv,

(i) u+0=u, vi)  (k+K)u=ku+Ku,
(i) wu+ (—u) =0, (vil)  (kk")u = k(k'u),
iv) u+v=v+u, (viii)  lu = u.

We postpone the proof of Theorem 1.1 until Chapter 2, where it appears in the context of matrices
(Problem 2.3).

Suppose u and v are vectors in R" for which u = kv for some nonzero scalar k in R. Then u is called a
multiple of v. Also, u is said to be in the same or opposite direction as v according to whether £k > 0 or
k <O0.

1.4 Dot (Inner) Product

Consider arbitrary vectors u and v in R"; say,
u=(a,a,...,a,) and v=(by,by,...,b,)

The dot product or inner product of u and v is denoted and defined by
u-v=ab, +ab,+---+a,b,

That is, u - v is obtained by multiplying corresponding components and adding the resulting products.
The vectors u and v are said to be orthogonal (or perpendicular) if their dot product is zero—that is, if
u-v=0.

EXAMPLE 1.3
(@) Letu=(1,-2,3), v=(4,5,—1), w=(2,7,4). Then,
u-v=104)-2(5+3(-1)=4-10-3=-9
u-w=2-14+12=0, v-w=8+35-4=39
Thus, u and w are orthogonal.
BEE
(b) Letu= 3landv=|—-1|.Thenu-v=6—-3+8=11.
—4 -2
(c) Suppose u = (1,2,3,4) and v = (6,k,—8,2). Find k so that u and v are orthogonal.
First obtain u - v = 6 + 2k — 24 + 8 = —10 + 2k. Then set # - v = 0 and solve for &:
—-104+2k=0 or 2k =10 or k=5
Basic properties of the dot product in R" (proved in Problem 1.13) follow.
THEOREM 1.2: For any vectors u, v,w in R" and any scalar k in R:
@O (u4v)-w=u-wt+uv-w, (i) u-v=v-u,
() (ku)-v=k(u-v), iv) u-u>0,andu-u=0iff u=0.
Note that (ii) says that we can “take k out” from the first position in an inner product. By (iii) and (ii),
u-(kv) = (kv) - u=k(v-u) =k(u-v)
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That is, we can also “take k out” from the second position in an inner product.
The space R" with the above operations of vector addition, scalar multiplication, and dot product is
usually called Euclidean n-space.

Norm (Length) of a Vector

The norm or length of a vector u in R", denoted by ||u||, is defined to be the nonnegative square root of
u - u. In particular, if u = (a,,a,,...,a,), then

lull = v u= /@ +ad+-+ a3

That is, |ju|| is the square root of the sum of the squares of the components of u. Thus, |[u|| > 0, and
||u|| = 0 if and only if u = 0.

A vector u is called a unit vector if ||u|]| = 1 or, equivalently, if u - u = 1. For any nonzero vector v in
R", the vector

R 1 v
V=—70 = —
loll = [loll
is the unique unit vector in the same direction as v. The process of finding ¢ from v is called normalizing v.
EXAMPLE 1.4

(a) Suppose u = (1,—2,—4,5,3). To find ||u|
adding, as follows:

[ul? = 17+ (<2 + (4 + 5+ 3 =1 +4+16+25+9 =55
Then ||u| = v/55.
(b) Let v=(1,-3,4,2) and w = (%,—%,%,%). Then

9 1 25 1 36
= = = _ S R — p— —
llv]| = vV14+9+16+ V30 and [lw]| 36+36+36+36 \36 Vi=1

Thus w is a unit vector, but v is not a unit vector. However, we can normalize v as follows:

, we can first find ||u|* = u - u by squaring each component of u and

R v ( 1 -3 4 2 )
V=77 = ) 9 )
loll - \v/30"v/30v/30" /30
This is the unique unit vector in the same direction as v.

The following formula (proved in Problem 1.14) is known as the Schwarz inequality or Cauchy—
Schwarz inequality. It is used in many branches of mathematics.

THEOREM 1.3 (Schwarz): For any vectors u, v in R", |u - v| < ||ul|||v]|.

Using the above inequality, we also prove (Problem 1.15) the following result known as the “triangle
inequality” or Minkowski’s inequality.

THEOREM 1.4 (Minkowski): For any vectors u, v in R, ||u+ || < ||u| + ||v]-

Distance, Angles, Projections

The distance between vectors u = (a,,a,,...,a,) and v = (b}, b,,...,b,) in R" is denoted and defined
by

d(u,v) = u— ol = \/(ay — b)) + (@y— by)* + -+ (a, — b,)?

One can show that this definition agrees with the usual notion of distance in the Euclidean plane R? or
3
space R”.
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The angle 6 between nonzero vectors u, v in R" is defined by
cos =7
[ull[[ ]
This definition is well defined, because, by the Schwarz inequality (Theorem 1.3),
u-v
= lullflol]

Note that if u-v =0, then 0 =90° (or 0 = n/2). This then agrees with our previous definition of

orthogonality.
The projection of a vector u onto a nonzero vector v is the vector denoted and defined by
i, 0) u-v u-v
proj(u,v) = —5v = ——
’ lol* v

We show below that this agrees with the usual notion of vector projection in physics.
EXAMPLE 1.5
(a) Suppose u = (1,—2,3) and v = (2,4,5). Then

d(u,v) = \/(1 —2)P 4+ (—2-4)’+(3-5 =V1+36+4=1+41

To find cos 0, where 0 is the angle between u and v, we first find

u-v=2-8+15=9, Jul> =1+4+9 =14, o> =4 + 16 +25 = 45
Then
cos = “vo_ 2
Jullllvll V14v/45
Also,
proj(u,v)—ﬁv—%(2,4,5):%(2,4,5):<§,§,1>

(b) Consider the vectors u and v in Fig. 1-2(a) (with respective endpoints A and B). The (perpendicular) projection of
u onto v is the vector u* with magnitude

u-v u-v

[[w*]| = [|ul| cos O = [Ju]| ;s = 7+

lufloll ol

To obtain u*, we multiply its magnitude by the unit vector in the direction of v, obtaining
v u-v v u-v

= | o = T =
ol =~ Tol Tell ~ P

This is the same as the above definition of proj(u, v).

QA Zh
1
E P(b\—a,, b,—a, by—a,)
1
| B(b,, by, b3)
1
i
1
| u Alay, ay, aj)
Cﬂ B 0 >
- v v y
X
Projection u* of u onto v u=B-A

(a) (b)
Figure 1-2
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1.5 Located Vectors, Hyperplanes, Lines, Curves in R"

This section distinguishes between an n-tuple P(a;) = P(a;,a,,...,a,) viewed as a point in R" and an
n-tuple u = [c;, ¢,,...,c,| viewed as a vector (arrow) from the origin O to the point C(cy, ¢y, ..., c,).

Located Vectors
Any pair of points A(a;) and B(b;) in R”" defines the located vector or directed line segment from A to B,
— —
written AB. We identify AB with the vector
u=B—-A=1[b, —a;, b—ay, ..., b,—a,]

because AB and u have the same magnitude and direction. This is pictured in Fig. 1-2(b) for the
points A(a;,a,,a;) and B(by,by,b;) in R® and the vector u =B — A which has the endpoint
P(by —ay, by —ay, by —a

Hyperplanes
A hyperplane H in R" is the set of points (x;,x,,...,x,) that satisfy a linear equation
a\x; +axy+---+ax,=>b

where the vector u = [a,,a,, . .. ,a,] of coefficients is not zero. Thus a hyperplane H in R? is a line, and a
hyperplane H in R* is a plane We show below, as pictured in Fig. 1-3(a) for R?, that u is orthogonal to
any directed line segment PQ where P(p;) and Q(g;) are points in H. [For this reason, we say that u is
normal to H and that H is normal to u.]

P+ tu

P—tyu

(@) (b)

Figure 1-3
Because P(p;) and Q(g;) belong to H, they satisfy the above hyperplane equation—that is,
apytap,+---+a,p,=b and a,q, +aq +---+a,q,=0b
—
Let U:PQ:Q_P:[QI_plan_p27"'7qn_pn]

Then

u-v=ay(q —py)+ayq —py)+-+a,q, —p,)
=(aq, +arqo +---+a,q,) — (@ py +apy+---+a,p,) =b—b=0

— . .
Thus v = PQ is orthogonal to u, as claimed.
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Lines in R"

The line L in R" passing through the point P(b;,b,,...,b,) and in the direction of a nonzero vector
u=laj,a,,...,a,l consists of the points X(x;,x,,...,x,) that satisfy

.xl = Cllt + bl

x2 = azt + b2

X=P+u or or L(t) = (a;t + b;)

where the parameter t takes on all real values. Such a line L in R? is pictured in Fig. 1-3(b).

EXAMPLE 1.6

(a) Let H be the plane in R? corresponding to the linear equation 2x — 5y + 7z = 4. Observe that P(1,1,1) and
0(5,4,2) are solutions of the equation. Thus P and Q and the directed line segment

v=P0=Q-P=1[5-14—1,2-1]=[4,3,1]

lie on the plane H. The vector u = [2,—5,7] is normal to H, and, as expected,
w-v=1_2,-57-14,3,1=8-154+7=0

That is, u is orthogonal to v.

(b) Find an equation of the hyperplane H in R* that passes through the point P(1,3,—4,2) and is normal to the
vector u = [4,—2,5,6].
The coefficients of the unknowns of an equation of H are the components of the normal vector u; hence, the
equation of H must be of the form

4x) — 2%y + Sx3 + 6x, =k
Substituting P into this equation, we obtain

4(1) —2(3)+5(—4)+6(2) =k or 4-6-20+12=k% or k=-10
Thus, 4x; — 2x, + 5x3 + 6x, = —10 is the equation of H.

(c) Find the parametric representation of the line L in R* passing through the point P(1,2,3, —4) and in the direction
of u=[5,6,—7,8]. Also, find the point Q on L when ¢ = 1.
Substitution in the above equation for L yields the following parametric representation:

x1:5l‘+1, X2:6t+2, X3:_7t+3, X4:8t_4
or, equivalently,
L(t) = (5t+ 1,6t +2,-7r+ 3,8t — 4)

Note that ¢ = 0 yields the point P on L. Substitution of ¢ = 1 yields the point Q(6,8,—4,4) on L.

Curves in R"

Let D be an interval (finite or infinite) on the real line R. A continuous function F: D — R" is a curve in
R". Thus, to each point 7 € D there is assigned the following point in R":

F(t) = [Fl(t)aFZ(t)y ce 7Fn(t)]
Moreover, the derivative (if it exists) of F(r) yields the vector

_ dF (1) _ [dF (1) dF(1) dF,(1)

V(t ..
) dt e’ dt O dt
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which is tangent to the curve. Normalizing V(z) yields

V(t
T(t) = V)
4ol
Thus, T(¢) is the unit tangent vector to the curve. (Unit vectors with geometrical significance are often
presented in bold type.)

EXAMPLE 1.7 Consider the curve F(t) = [sint,cost, ] in R®. Taking the derivative of F(z) [or each component of
F(1)] yields

V(t) = [cost, —sint, 1]
which is a vector tangent to the curve. We normalize V(¢). First we obtain
[VO)|IP =cos’t+sin’t+1=1+1=2
Then the unit tangent vection T(¢) to the curve follows:
(0 Vi) {cos t = sin ¢ ’ L}
V2T V2 V2

vl

1.6 Vectors in R® (Spatial Vectors), ijk Notation

Vectors in R?, called spatial vectors, appear in many applications, especially in physics. In fact, a special
notation is frequently used for such vectors as follows:

i=[1,0,0] denotes the unit vector in the x direction.
j =10, 1,0] denotes the unit vector in the y direction.
k = [0, 0, 1] denotes the unit vector in the z direction.
Then any vector u = [a, b, c] in R® can be expressed uniquely in the form
u=la,b,c|] =ai+ bj+ ck

Because the vectors i, j,k are unit vectors and are mutually orthogonal, we obtain the following dot
products:

i-i=1, jj=1, k-k=1 and i-j=0, i-k=0, j-k=0

Furthermore, the vector operations discussed above may be expressed in the ijk notation as follows.
Suppose

u=a)i+ aj+ azk and v=bii+ b,j+ bk
Then
u+v=_(a,+b)i+(a,+b,)j+ (a3+by)k and cu = cai+ caj+ cazk

where c is a scalar. Also,

M'U:albl +a2b2+a3b3 and ||l/t|| = \Uu-u= a%—i—a%—l—a%

EXAMPLE 1.8 Suppose u = 3i+ 5j — 2k and v = 4i — 8j + 7k.
(a) To find u + v, add corresponding components, obtaining u + v = 7i — 3j + 5k
(b) To find 3u — 2w, first multiply by the scalars and then add:

3u—2v= 9+ 15j — 6k) + (—8i+ 16j — 14k) =i+ 31j — 20k
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(c) To find u - v, multiply corresponding components and then add:
u-v=12-40—-14=—-42

(d) To find ||u||, take the square root of the sum of the squares of the components:

llul| = V9 +25+4=1/38

Cross Product

There is a special operation for vectors u and v in R? that is not defined in R" for n # 3. This operation is
called the cross product and is denoted by u x v. One way to easily remember the formula for # x v is to
use the determinant (of order two) and its negative, which are denoted and defined as follows:

a b a b

d =ad — bc and e 4

=bc —ad

Here a and d are called the diagonal elements and b and c are the nondiagonal elements. Thus, the
determinant is the product ad of the diagonal elements minus the product bc of the nondiagonal elements,
but vice versa for the negative of the determinant.

Now suppose u = a1+ a,j + ask and v = b;i + b,j + bsk. Then

U X v=(ayby — azby)i+ (asb, — a,bs)j+ (a,b, — a;b) )k
a; 4 4 a, §dgy as a a4 a3
by b, bs by by bs by by b3
That is, the three components of u X v are obtained from the array
|:a1 a as}
b, b, by

(which contain the components of u above the component of v) as follows:

i— i+ k

(1) Cover the first column and take the determinant.
(2) Cover the second column and take the negative of the determinant.
(3) Cover the third column and take the determinant.

Note that u X v is a vector; hence, u X v is also called the vector product or outer product of u
and v.
EXAMPLE 1.9 Find u x v where: (a) u = 4i + 3j 4+ 6k, v = 2i +5j — 3k, (b) u = [2,—1,5], v=13,7,6].

(a) Use [g g _g} togetuxv = (=9—30)i+ (12+12)j+ (20 — 6)k = —39i + 24j + 14k

2 -1 5

(b) Use [3 7 6

} togetuxv = [~6—3515—12,14+3] = [~41,3,17]

Remark: The cross products of the vectors i, j, k are as follows:
ixj=Kk, ixk=i, KXi=j
jxi= -k, k x j= —i, ixk=—j

Thus, if we view the triple (i, j, k) as a cyclic permutation, where i follows k and hence k precedes i, then
the product of two of them in the given direction is the third one, but the product of two of them in the
opposite direction is the negative of the third one.

Two important properties of the cross product are contained in the following theorem.
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u /

Volume = u.v X w Complex plane

(a) )
Figure 1-4
THEOREM 1.5: Let u, v, w be vectors in R>.

(a) The vector u x v is orthogonal to both u and wv.

(b) The absolute value of the “triple product”
u-vXxXw

represents the volume of the parallelepiped formed by the vectors u,v, w.
[See Fig. 1-4(a).]

We note that the vectors u, v, u X v form a right-handed system, and that the following formula gives
the magnitude of u x v:

[l o] = Jlufl[[o]] sin 6

where 0 is the angle between u and v.

1.7 Complex Numbers

The set of complex numbers is denoted by C. Formally, a complex number is an ordered pair (a, b) of real
numbers where equality, addition, and multiplication are defined as follows:

(a,b) = (c,d) ifandonlyifa=candb=4d
(a,b) + (c,d) = (a+c, b+d)
(a,b) - (c,d) = (ac — bd, ad + bc)
We identify the real number a with the complex number (a,0); that is,
a < (a,0)

This is possible because the operations of addition and multiplication of real numbers are preserved under
the correspondence; that is,

(a,0) + (b,0) = (a+b, 0) and (a,0) - (b,0) = (ab,0)
Thus we view R as a subset of C, and replace (a,0) by a whenever convenient and possible.

We note that the set C of complex numbers with the above operations of addition and multiplication is a
field of numbers, like the set R of real numbers and the set Q of rational numbers.
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The complex number (0, 1) is denoted by i. It has the important property that
?=ii=(0,1)(0,1)=(=1,0)=—1 or i=+v—-1
Accordingly, any complex number z = (a,b) can be written in the form
z=(a,b) = (a,0) + (0,b) = (a,0) + (b,0) - (0,1) = a + bi

The above notation z = a + bi, where a = Re z and b = Im z are called, respectively, the real and
imaginary parts of z, is more convenient than (a, b). In fact, the sum and product of complex numbers
z=a++bi and w = ¢+ di can be derived by simply using the commutative and distributive laws and
2
i =-1

z+w=(a+bi)+(c+di)=a+c+bi+di=(a+b)+ (c+d)i
w = (a+ bi)(c + di) = ac + bci + adi + bdi* = (ac — bd) + (bc + ad)i
We also define the negative of z and subtraction in C by

—z=-1z and w-z=w+(-2)

Warning: The letter i representing v/—1 has no relationship whatsoever to the vector i = [1,0,0] in
Section 1.6.

Complex Conjugate, Absolute Value
Consider a complex number z = a + bi. The conjugate of z is denoted and defined by
Z=a+bi=a—bi

Then 2z = (a + bi)(a — bi) = a®> — b*i* = a® + b*. Note that z is real if and only if z = z.
The absolute value of z, denoted by |z|, is defined to be the nonnegative square root of zz. Namely,

2| = Vzz = Va® + b?

Note that |z| is equal to the norm of the vector (a, b) in R?.
Suppose z # 0. Then the inverse z~! of z and division in C of w by z are given, respectively, by
_2_ _a b woowz

7 === - i and T =Wz
Z a*+b> a®+b? 7

EXAMPLE 1.10 Suppose z =2+ 3i and w = 5 — 2i. Then

Aw=02+3)+(5-2)=2+5+3i—2i=T+i
w=(2+3i)(5-2i) =10+ 15— 4i — 6> = 16 + 11i
2=2+3i=2-3i and w=5-2i=5+2i
wo 5-2 (5-20)(2-3i) 4-19% 4 19,
Z 243 (2+3)(2-3) 13 13 13

2 =V4+9=+13 and |w|=+25+4=129

Complex Plane

Recall that the real numbers R can be represented by points on a line. Analogously, the complex numbers
C can be represented by points in the plane. Specifically, we let the point (a, b) in the plane represent the
complex number a + bi as shown in Fig. 1-4(b). In such a case, |z| is the distance from the origin O to the
point z. The plane with this representation is called the complex plane, just like the line representing R is
called the real line.
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1.8 Vectors in C"

The set of all n-tuples of complex numbers, denoted by C", is called complex n-space. Just as in the real
case, the elements of C" are called points or vectors, the elements of C are called scalars, and vector
addition in C" and scalar multiplication on C" are given by

[21,227 s 7ZVJ + [W17W27- ce 7Wn] = [Zl +W17 %6 +W27 sy Ly +wn]
Z[Zl’zb s 7Zn] = [ZZIaZZ2a cee ,ZZ,,]
where the z;, w;, and z belong to C.
EXAMPLE 1.11 Consider vectors u = [2 4 3i, 4 —i, 3] and v = [3 — 2i, 5i, 4 — 6i] in C*. Then

u+v = 2430, 4—i 3]+ [3—2i, 5i, 4—6i] = [S+i, 4+4i, 7— 6
(5—20u = [(5-2)(2+43i), 5=2)4—i), (5-2)3)] = [16+ 11i, 18 — 13i, 15— 6i]

Dot (Inner) Product in C"

Consider vectors u = [z;,2, - - -, 2, and v = [w;, w,, ..., w,] in C". The dot or inner product of u and v is
denoted and defined by

u'v:Z1w1+Z2w2+”'+2nwn

This definition reduces to the real case because w; = w; when w; is real. The norm of u is defined by

lull = Vi = vz F i+ F s = VIl + [P 4o+ P
We emphasize that u - 4 and so ||u|| are real and positive when u # 0 and 0 when u = 0.
EXAMPLE 1.12 Consider vectors u = [2+ 3i, 4 —i, 34 5i] and v = [3 — 4i, 5i, 4 —2i] in C*. Then
u-v=(2+3i)(3 —4i) + (4 —i)(5i) + (3 + 5i)(4 — 2i)
= (2430)(3+4i) + (4 —i)(—5i) + (34 5i)(4 + 2i)
= (=6 + 13i) + (=5 — 20i) + (2 + 26i) = —9+19i
wou=2+3 +[4—iP+3+5> = 44+94+16+1+9+25 = 64
llul| = V64 =8

The space C" with the above operations of vector addition, scalar multiplication, and dot product, is
called complex Euclidean n-space. Theorem 1.2 for R" also holds for C" if we replace u- v = v - u by

u-v=u-v

On the other hand, the Schwarz inequality (Theorem 1.3) and Minkowski’s inequality (Theorem 1.4) are
true for C" with no changes.

SOLVED PROBLEMS

Vectors in R"
1.1. Determine which of the following vectors are equal:

Uy :(17273)7 u2:(27371)7 M3:(17372)7 u4:(27371)

Vectors are equal only when corresponding entries are equal; hence, only u, = u,.
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1.2.

1.3.

1.4.

1.5.

CHAPTER 1 Vectors in R" and C", Spatial Vectors

Letu=(2,-7,1), v=(-3,0,4), w= (0,5, —8). Find:

(@) 3u—4v,

(d) 2u + 3v — Sw.

First perform the scalar multiplication and then the vector addition.

(@) 3u—4v=3(2,-7,1) —4(-3,0,4) = (6, -21,3) + (12,0, —16) = (18, —21,—13)
(b) 2u+3v—5w=(4,—-14,2) +(-9,0,12) + (0, —25,40) = (-5, —-39,54)

5 -1 3
Let u = 3(,v= 5{,w=|—1]. Find:
—4 2 -2
(a) Su— 2w,

(b) —2u+ 4v —3w.

First perform the scalar multiplication and then the vector addition:

5 -1 25 2 27
@ Su—20=5| 3| -2 s|=| 15|+|-10]=] 5
—4 2 -20 —4 —24

~10 —4 -9 -23

(b) —2u+4v—3w=| 6|+ |20+ 3|=]| 17

8 8 6 22

Find x and y, where: (a) (x,3) = (2, x+y), () (4,y) =x(2,3).
(a) Because the vectors are equal, set the corresponding entries equal to each other, yielding
x =2, 3=x+y

Solve the linear equations, obtaining x =2, y = 1.

(b) First multiply by the scalar x to obtain (4,y) = (2x,3x). Then set corresponding entries equal to each
other to obtain

Solve the equations to yield x =2, y = 6.

Write the vector v = (1, —2,5) as a linear combination of the vectors u; = (1,1, 1), u, = (1,2,3),
u, = (2,-1,1).

We want to express v in the form v = xu; + yu, + zu; with x,y, z as yet unknown. First we have

1 1 1 2 x+ y+2z
2| =x|1|4+y[2|+z|-1|=|x+2y— z
5 1 3 1 x+3y+ z

(It is more convenient to write vectors as columns than as rows when forming linear combinations.) Set
corresponding entries equal to each other to obtain

x+ y+2z= 1 x+ y+2z= 1 x+y+2z= 1
X+2y— z=-2 or y—3z=-3 or y—3z=-3
x+3y+ z= 5 2y— z= 4 5z= 10

This unique solution of the triangular systemisx = —6,y = 3, z = 2. Thus, v = —6u; + 3u, + 2u;.
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1.6.

Write v = (2, —5,3) as a linear combination of

Uy = (1,—3,2)7142 = (27 _4a _1)7”3 = (17_577)~

Find the equivalent system of linear equations and then solve. First,

2 1 2 1 x+2y+ z
5| =x|-3|+y|-4|+z|-5|=|-3x—-4y-3z
3 2 -1 7 2x— y+7z
Set the corresponding entries equal to each other to obtain
x+2y4+ z= 2 x+2y+ z= 2 xX+2y+ z=2
—3x—4y—-5z=-5 or 2y —2z= 1 or 2y —2z=1
2x— y+Tz= 3 —S5y+5z=-1 0=3

The third equation, Ox + Oy 4 Oz = 3, indicates that the system has no solution. Thus, v cannot be written as a
linear combination of the vectors u;, u,, us.

Dot (Inner) Product, Orthogonality, Norm in R"

1.7.

1.8.

1.9.

1.10.

Find u - v where:

(@ u=(2,-5,6) and v = (8,2,-3),

(b) u=(4,2,-3,5,—1) and v=(2,6,—1,—4,8).
Multiply the corresponding components and add:

(@ u-v=208)—-52)+6(-3)=16—-10—-18=—12
b) u-v=8+12+3-20-8=-5

Let u = (5,4,1), v=(3,—4,1), w = (1,—-2,3). Which pair of vectors, if any, are perpendicular
(orthogonal)?

Find the dot product of each pair of vectors:
u-v=15-16+1=0, v-w=34+8+3=14, u-w=5-8+43=0

Thus, u and v are orthogonal, # and w are orthogonal, but v and w are not.

Find k so that # and v are orthogonal, where:

@ u=(1,k,—3) and v = (2, —-5,4),

(b) u=(2,3k,—4,1,5) and v = (6,—1,3,7, 2Kk).

Compute u - v, set u - v equal to 0, and then solve for &:

(@ u-v=1(2)+k(-5) —3(4) = =5k — 10. Then —5k — 10 =0, or k = —2.
b) u-v=12-3k—12+7+ 10k =7k+7. Then 7k +7 =0, 0r k = —1.

Find ||u||, where: (a) u = (3,—12,—4), b)) u=(2,-3,8,-7).
First find ||u||* = u - u by squaring the entries and adding. Then ||u|| = \/||u]*.

@ |ull> = (3)*+ (—=12)* + (—4)> =9 + 144 + 16 = 169. Then ||u|| = V169 = 13.
(b) ||ul|* =4 +9+64+49 = 126. Then [ul| = v/126.
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111.

1.12.

1.13.
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Recall that normalizing a nonzero vector v means finding the unique unit vector ¥ in the same
direction as v, where

1
mv
Normalize: (a) u = (3,—4), (b) v=(4,-2,-3,8), ) w= (%, %, —}—1).
(a) First find [|u| = v/9 + 16 = v/25 = 5. Then divide each entry of u by 5, obtaining it = (3, — 9.
(b) Here ||v]| = V16 +4 +9 + 64 = \/93. Then

{}:

. 4 -2 -3 8
V=T Ty = =
<\/93 V93 /93 \/93>
(c) Note that w and any positive multiple of w will have the same normalized form. Hence, first multiply w by
12 to “clear fractions”—that is, first find w' = 12w = (6, 8, —3). Then

-~ 6 8 -3
I = V36 + 64 +9 = V109 and W = /:( : , )
I wEWE A\ Ve Vi’ Vioo

Let u = (1,-3,4) and v = (3,4,7). Find:
(a) cos6, where 6 is the angle between u and v;
(b) proj(u, v), the projection of u onto v;
(c) d(u,v), the distance between u and wv.

First find u-v=3—-12+28 =19, |lul>=1+9+16=26, |v]|* =9+ 16 +49 = 74. Then

. 19
(@) cosf = “vo_ s
lullllol 26174
u-v 19 57 76 133 57 38 133
b j =——0v=—-0B34TN=——— | ==, —=,—
( ) prQ](Lh’U) ||UH2U 74( (RS ] ) (747747 74> (747377 74)a

©) d(u,v) = llu—v|| = [(=2,-7-3)|| = V4 +49 +9 = V62.

Prove Theorem 1.2: For any u, v,w in R" and k in R:
i (utv)-w=u-wt+uv-w, () (ku)-v="k(u-v), (i) u-v=v-u,
v) u-u>0,andu-u=0iff u =0.
Let u = (uy, s, ... u,), 0v="_(01,0,...,0,), w= (W, Wp,...,W,).
(i) Because u+v=(u; + vy, uy+ vy, ..., u,+v,),
(u+v) - w=(uy +o)w; + (0 + v)wy + -+ (, + v,)w,
=umw; + uyw; +uywy + - +u,w, + v,w,
= (uywy +uywy + -+ +u,w,) + (vywy + vwy + o+ v,w,)
=u-w+uv-w
(ii) Because ku = (ku,,ku,, ..., ku,),
(ku) - v =kuyv, + kuyvy + -+ + ku,v, = k(uv) + v, + -+ - + u,0,) = k(u - v)
(i) u-v=uv; +uyvy + - +u,v, =vU + Uy +---F+ VU, =0 u

2

(iv) Because u; is nonnegative for each i, and because the sum of nonnegative real numbers is nonnegative,

w-u=ul i+ +ud>0

Furthermore, u - u = 0 iff u; = 0 for each i, that is, iff u = 0.
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1.14.

1.15.

Prove Theorem 1.3 (Schwarz): |u - v| < ||u]|||v||.
For any real number ¢, and using Theorem 1.2, we have

0< (tu+v)- (u+v)=(u-u)+2t(u-v)+ (v-v) = |Jul’ + 2(u- v)t + ||o||*

Let a = |ju |2, b=2u-v), c= ||v||2 Then, for every value of ¢, at> + bt + ¢ > 0. This means that the
quadratic polynomial cannot have two real roots. This implies that the discriminant D = b*> — 4ac < 0 or,
equivalently, > < 4ac. Thus,

2 2012
4w 0)" < Al

Dividing by 4 gives us our result.

Prove Theorem 1.4 (Minkowski): |lu + v|| < ||u]| + |||
By the Schwarz inequality and other properties of the dot product,
2 2 2 2
lu+oll” = (u+v) - (utv) = (u-u) + 2@ 0) + (v-0) < [lull” + 2ffulllo]] + [0 = (]l +[][])

Taking the square root of both sides yields the desired inequality.

Points, Lines, Hyperplanes in R"

Here we distinguish between an n-tuple P(a,,a,,...,a,) viewed as a point in R" and an n-tuple
u=|cy,cy,...,c,) viewed as a vector (arrow) from the origin O to the point C(c;,¢;, ..., c,).
1.16. Find the vector u identified with the directed line segment PQ for the points:

1.17.

1.18.

1.19.

(@ P(1,-2,4) and Q(6,1,—5)inR’>, () P(2,3,-6,5) and Q(7,1,4,—8) in R*,
(a)MIP_Q):Q—P:[6_1, 1_(_2)7 _5_4}:[5a37_9]
) u=PG=0Q—-P=[1-2, 1-3, 446, —8—5]=[5,-2,10,—13]

Find an equation of the hyperplane H in R* that passes through P(3,—4,1,—2) and is normal to
u=1[2,5-6,-3.

The coefficients of the unknowns of an equation of H are the components of the normal vector u. Thus, an
equation of H is of the form 2x; + 5x, — 6x;3 — 3x, = k. Substitute P into this equation to obtain k = —26.
Thus, an equation of H is 2x; + 5x, — 6x3 — 3x, = —26.

Find an equation of the plane H in R? that contains P(1, —3, —4) and is parallel to the plane H’
determined by the equation 3x — 6y + 5z = 2.

The planes H and H' are parallel if and only if their normal directions are parallel or antiparallel (opposite
direction). Hence, an equation of H is of the form 3x — 6y 4 5z = k. Substitute P into this equation to obtain
k = 1. Then an equation of H is 3x — 6y + 5z = 1.

Find a parametric representation of the line L in R* passing through P(4, —2,3, 1) in the direction
of u=1[2,5-7,8|.

Here L consists of the points X(x;) that satisfy
X=P+1m or x;=at+b or L(t) = (a;t + b))
where the parameter ¢ takes on all real values. Thus we obtain

Xp =442t x,=-2+42t, x3=3-Tt, x,=1+8 or L(t)=(4+2t, =2+2t, 3—7t, 1+ 8¢)
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1.20. Let C be the curve F(r) = (2, 3t —2, 2, 2 +5) in R*, where 0 <1 < 4.

(a) Find the point P on C corresponding to ¢ = 2.
(b) Find the initial point Q and terminal point Q' of C.
(c) Find the unit tangent vector T to the curve C when t = 2.

4,4,8,9).

(a) Substitute t =2 into F(z) to get P =f(2) = (
t=0 to t=4. Hence, Q=f(0)=(0,-2,0,5) and

(b) The parameter ¢ ranges from
Q' =F(4) =(16,10,64,21).

(c) Take the derivative of F(t)—that is, of each component of F(¢)—to obtain a vector V that is tangent to the
curve:

dF(t
V(t) = # = [2t,3,3¢%,21]

Now find V when ¢=2; that is, substitute 7r=2 in the equation for V(r) to obtain
V =V(2) = [4,3,12,4]. Then normalize V to obtain the desired unit tangent vector T. We have

4 3 12 4
T: ) ) )
V185 V185 /185 /185

IVl =v16+9+ 144 +16 = V185  and

Spatial Vectors (Vectors in R3), ijk Notation, Cross Product

1.21. Letu =2i—3j+4k, v=3i+j— 2k, w =1+ 5j + 3k. Find:
(@ u+w, (b) 2u—3v+ 4w, (© wu-vandu-w, (d) ||u|l and ||v]|.
Treat the coefficients of i, j, k just like the components of a vector in R

(a) Add corresponding coefficients to get u + v = 5i — 2j — 2k.
(b) First perform the scalar multiplication and then the vector addition:

2u — 3v+ 4w = (4i — 6j + 8k) + (—9i — 3j + 6k) + (4i + 20j + 12k)
= —i+11j+ 26k
(c) Multiply corresponding coefficients and then add:
u-v=6-3-8=-5 and u-w=2-15+12=-1
(d) The norm is the square root of the sum of the squares of the coefficients:

fu| =vV4+9+16=v29 and |lo]|=v9+1+4=114

1.22. Find the (parametric) equation of the line L:
(a) through the points P(1,3,2) and Q(2,5, —6);

(b) containing the point P(1,—2,4) and perpendicular to the plane H given by the equation
3x+ 5y +7z=15.

(a) First find v:P—Q>=Q—P:[1,2,—8]=i+2j—8k. Then
L(t) = (t+1, 2t +3, —8t+2)=(r+ )i+ (2t +3)j+ (-8 +2)k

(b) Because L is perpendicular to H, the line L is in the same direction as the normal vector N = 3i 4- 5j + 7k
to H. Thus,

L(t)=(B3t+1, 5t =2, 7Tt+4)= (3t + )i+ (5t = 2)j+ (7t + 4)k
1.23. Let S be the surface xy* + 2yz = 16 in R°.

(a) Find the normal vector N(x,y,z) to the surface S.
(b) Find the tangent plane H to S at the point P(1,2,3).
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1.24.

1.25.

1.26.

1.27.

1.28.

(a) The formula for the normal vector to a surface F(x,y,z) =0 is
N(x,y,z) =Fi+Fj+Fk
where F\, F,, F, are the partial derivatives. Using F (x,y,2) = xy* + 2yz — 16, we obtain
F, =Y, F, =2xy + 2z, F,=2y
Thus, N(x,y,2) = y*i + (2xy + 22)j + 2yk.
(b) The normal to the surface S at the point P is
N(P) =N(1,2,3) = 4i + 10j + 4k

Hence, N = 2i + 5j + 2k is also normal to S at P. Thus an equation of H has the form 2x + 5y + 2z = c.
Substitute P in this equation to obtain ¢ = 18. Thus the tangent plane H to S at P is 2x + 5y + 2z = 18.

Evaluate the following determinants and negative of determinants of order two:

|3 4 12 =1 ... |4 =5
@ @ |5 | G ‘ P G P

. 3 6 . 7 -5 4 -1
(b) (1) _'4 2 s (11) _’3 2 s (111) _'8 _3‘
Use a b’—adbcanda b‘—bcad.Thus,

c d c d

@@ ()27-20=7, (i) 6+4 =10, (i) —8 +15="7.
(b) ()24 —6=18, (i) —15— 14 = —29, (iii) —8 + 12 = 4.

Let u=2i—3j+4k, v=3i+j—2k, w=i+5j+ 3k
Find: (@) uxov, (b) uxw

(a) Use [g _? _‘2‘} togetuxv=(6—-4)i+ (12+4)j+ (2+9)k =2i+ 16j + 11k.
2 -3 4 . . . .
() Use || 5 3| © getu x w=(—9—20)i+ (4—06)j+ (10 +3)k = —29i — 2j + 13k.

Find u x v, where: (a) u = (1,2,3), v=(4,5,6); b) u=(—4,7,3), v=(6,-5,2).

(a) Use [i g 2} to get u x v=[12—-15, 12-6, 5—8] =[-3,6,-3].
—4 7 3
(b) Use{ . s 2} to get u x v=[14+ 15, 18 +8, 20 — 42] = [29,26, —22].

Find a unit vector u orthogonal to v = [1,3,4] and w = [2, —6, —3].
First find v x w, which is orthogonal to v and w.
The array [; _Z _g] gives v x w=[-15+24, 8+5, —6—61]=[9,13,—12].

Normalize v x w to get u = [9/+4/394, 13/1/394, —12/4/394].

Let u = (al,a27a3> and v = (bl’b25b3) SO U X v= (a2b3 — a3b2,a3b1 — a1b3,a1b2 — azbl).
Prove:

(a) u x v is orthogonal to # and v [Theorem 1.5(a)].

(®) |lu x v||2 =w-u)(v-v)—(u- v)2 (Lagrange’s identity).
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(a) We have
u- (uxv) =a,(abs — azb,) + ay(asby — aybs) + as(a;b, — aby)
= ﬂ1a2b3 — a1a3b2 -+ aza3b1 — a1a2b3 + a1a3b2 — aza3b] = O
Thus, u x v is orthogonal to u. Similarly, u x v is orthogonal to v.
(b) We have
2 2 2 2
[ x v||” = (ab3 — azb,)” + (azby — a;bs3)” + (a1b, — azby) (1)
2 2
(-u)(v-v) = (u-v)" = (a] + @ + a3)(b] + b5 + b3) — (a,b; + ayb, + asby) (2)
Expansion of the right-hand sides of (1) and (2) establishes the identity.

Complex Numbers, Vectors in C"

1.29.

1.30.

1.31.

1.32.

1.33.

1.34.

Suppose z=5+3iand w=2 —4i. Find: (a) z+w, (b) z—w, (c) zw.

Use the ordinary rules of algebra together with i> = —1 to obtain a result in the standard form a + bi.
@ z+w=05+3)+2—-4)=T7—-1i

b)) z—w=(5+4+3i))—(2—-4i))=5+3i—-2+4i=3+7i

() w=(5+3)2—-4)=10—14i — 122 =10 — 14i+ 12 =22 — 14i

Simplify: (a) (5+3i)(2—7i), ®) (437 () (1+2i).
(@) (54 3i)(2—7i) = 10+ 6i — 35i — 21 = 31 — 29i

(b) (4—3i) =16—24i+9%=7—24i

© (142 =1+6i+122+85=146i—12—8i=—11—2i

Simplify: (a) 0,3, (b) 2,8, (c) P39, {174 232 31T,

@ =1, 2=20)=(D0)=~i i*=(>)>) = (* )(=1) =1

b) &= (")) =)3) =i =" ) (1 )( ) -l == f=i=1

(c) Using i* =1 and i" = i**" = (*)7i" = 19i" = i", divide the exponent n by 4 to obtain the remainder r:
P9 = BO (0P 198 = P = i, FEZ 220, BTl

Find the complex conjugate of each of the following:

(@ 6+4i, 7—-5i, 44+i, -3 —1i, (b)y 6, =3, 4i, —9i.
(@ 6+4i=6—-4i, 7T-51=T7+51, 4+i=4—i, 3—i=-3+1
(b) 6=6, —3=-3, 4i=—4i, —9i=09i

(Note that the conjugate of a real number is the original number, but the conjugate of a pure imaginary
number is the negative of the original number.)

Find zZ and |z| when z = 3 + 4i.
For z = a + bi, use 7 = a* + b* and z = /2Z = Va* + b2
Z=9416=25, 2 = V25 =5

.. 2T
Simpify 530

To simplify a fraction z/w of complex numbers, multiply both numerator and denominator by w, the
conjugate of the denominator:

2-T7i (2-7i)(5-3i) —11—4li 11 41,

5+3i (5+3)(5-3i) 34 34 34
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1.35. Prove: For any complex numbers z, w € C, (i) z+w=Zz+w, (ii)) 7w =zw, (iii) Z =z
Suppose z = a + bi and w = ¢ + di where a,b,c,d € R.

Q) z+w= (@a+bi)+(c+di) = (a+c)+ (b+d)i
= (a+c)—(b+d)i = a+c—bi—di
= (a—bi)+(c—di) = z2+w
() zw= (a+bi)(c+di) = (ac—bd)+ (ad + bc)i
(ac — bd) — (ad + bc)i = (a —bi)(c —di) = zw

(ill) z=a+bi=a—-bi=a—(-b)i=a+bi=z

1.36. Prove: For any complex numbers z, w € C, |zw| = |z||w|.
By (ii) of Problem 1.35,
ol = (W) (@) = (w)(@) = (@)(ww) = [*]w]

The square root of both sides gives us the desired result.

1.37. Prove: For any complex numbers z,w € C, |z 4+ w| < |z] + |w].

Suppose z = a + bi and w = ¢ + di where a, b, c,d € R. Consider the vectors u = (a,b) and v = (¢,d) in
R2. Note that

|l = Va + 5> = ull, Wl = ve2+d = ||

and

e wl = Ia+6)+ (b +d)il = \J(a+ 0+ (b+d) = @@+ cb+d)| = Ju+ o
By Minkowski’s inequality (Problem 1.15), ||u + v|| < ||u|| + ||v||, and so
|z +wl = flu+ oll < [lull + (o]l = [z] + |w]

1.38. Find the dot products u-v and v-u where: (a) u=(1—2i, 3+i), v=(4+2i, 5—6i),
®) u=(3—2i 4, 1+6), v=(5+i, 2—3i, 7+2i).

Recall that conjugates of the second vector appear in the dot product

(Zl,...,Z,,)'(Wl,...,W,,):Z1W1+"'+ann
@ u-v=~1-2)EF2)+ G+ —60)
= (1-20)(4—2i) + (3+i)(5+6]) = —10i+9+23i = 9+ 13i
veou=(4+2i)(1-2i)+ (5-6i)(3+1)
=@+2)(14+2)+(5-6))3—1i) = 10i+9—-23i = 9—13i
) u-v=3-2i)5+1i)+ (4i)(2 = 3i) + (1 + 6i)(7 + 2i)
=0B-=2)(5-0)+)(2+3i)+ (1+6i)(7—2i)) = 20+35i
vou=(5+i)(3—2i)+ (2 —3i) (&) + (7 +2i)(1 + 60)

= (5+1)(3+2i) + (2 — 3i)(—4i) + (7 + 2i)(1 — 6i) = 20— 35i

In both cases, v - u = u- v. This holds true in general, as seen in Problem 1.40.

1.39. Letu = (7 —2i, 2+5i) and v = (1 +i, —3 — 6i). Find:
(@ u-+w, (b) 2iu, ) (3—1i)v, d u-v, (e) ||u| and ||v||.
(@ utv=(7-2i+1+1i, 2+5-3—-6i))=8—i, —1—1i)
(b) 2iu = (14i — 4%, 4i+10%) = (4 + 14i, —10+ 4i)
) B—idv=0CB+3i—i—i2, —9—18i+3i+6i%) = (4 +2i, —15—15i)
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@) u-v=(7-2)T+i)+ (2 +5)(=3 - 6i)
= (7-2)(1—i)+(245)(=3+6i)) = 5—9i—36—3i = =31 —12i

© flull = /72 + (<2 + 2+ 52 = VB2 and [[o]] = /12 + 12+ (=3)" + (=6)" = VAT

1.40. Prove: For any vectors u, v € C" and any scalar z € C, (i) u-v="v-u, (ii) (zu) - v=2z(u-v),
(i) u - (zv) = Z(u - v).

Suppose u = (2,22, --,2,) and v = (W, wy, ..., w,).

(1) Using the properties of the conjugate,

VU=WZ +Wolp W, = Wiz ey s Wz,
=W FWe o W, =Wy Wy e W, = U v

(i) Because zu = (22,22, - - - ,2%y)>
(zu) - v =zzyW) +22,W, + -~ +25,W, = 2(2yW| + W, + - +2,W,) = 2(u - v)

(Compare with Theorem 1.2 on vectors in R".)
(iii) Using (i) and (i),

=z(v-u) =z(v-u) =z(u-v)

=
—
2~
<
=
I
—
I
<
=
=

SUPPLEMENTARY PROBLEMS

Vectors in R"
141, Letu=(1,-2,4), v=(3,51), w=(2,1,—3). Find:

(@ 3u-—2u (b) Su+3v—4w; © wu-v, u-w, v-w @ lull, Nl 1wl
(e) cos0, where 0 is the angle between u and v; &) d(u,v); (2) proj(u, v).

1 2 3
1.42. Repeat Problem 1.41 for vectors u = 3l,v=1|1|,w=|-2
—4 5 6

1.43. Letu=(2,-5,4,6,—3) and v = (5,2, 1, —7, —4). Find:
(@ 4u—3v;, (b) S5u+2v; (¢) wu-v; (d) |u| and ||v|; (€) proj(u,v); (f) d(u,v).

1.44. Normalize each vector:

1 13
=(5.-7):; () v=(1,2,-2,4); =(5,-2.2).
@ =G 0 =224 © v (5733
1.45. Letu = (1,2,-2), v=(3,—12,4), and k = —3.
@ Find [ul, [[oll, [+ ol |kul.
(b) Verify that ||ku|| = |k||ju|| and ||u + v]] < ||u|| + ||v]|.

1.46. Find x and y where:
(a) (xv y+ 1) = (y - 27 6), (b) X(27y) :y(17 _2)

1.47. Find x,y,z where (x, y+ 1, y+2z) = 2x+y, 4, 3z2).
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1.48.

1.49.

1.50.

Write v = (2,5) as a linear combination of u; and u,, where:
@ = (1,2) and u, = (3,5);
() u; = (3,—4) and u, = (2,-3).

9 1 2 4
Write v = | —3 | as a linear combination of u; = |2 |, u, = S5 ,us=1|-2
16 3 -1 3

Find £ so that u and v are orthogonal, where:
(@ u=3,k,—2),v=1(6,—4,-3);

b) u=(5k —4,2), v=(1,-3,2,2k);

© u=(1,7, k+2, =2), v=(3,k,—3,k).

Located Vectors, Hyperplanes, Lines in R"

1.51.

1.52.

1.53.

Find the vector v identified with the directed line segment P_Q for the points:
(@) P(2,3,—7) and Q(1,—6,—5) in R%;
(b) P(1,-8,—4,6) and Q(3, 5,2, —4) in R*.

Find an equation of the hyperplane H in R* that:

(a) contains P(1,2,—3,2) and is normal to u = 2,3, —5,6];

(b) contains P(3,—1,2,5) and is parallel to 2x; — 3x, + 5x; — 7x, = 4.
Find a parametric representation of the line in R* that:

(a) passes through the points P(1,2,1,2) and Q(3,—5,7,-9);
(b) passes through P(1,1,3,3) and is perpendicular to the hyperplane 2x, + 4x, + 6x; — 8x, = 5.

Spatial Vectors (Vectors in R3), ijk Notation

1.54.

1.55.

1.56.

1.57.

1.58.

Given u =3i—4j+2k, v=2i+5j—3k, w=4i+7j+2k. Find:
(a) 2u—3uv; () 3u+4v—2w; © wu-v, u-w, v-w @ Al |l [[wll-

Find the equation of the plane H:

(a) with normal N = 3i — 4j + 5k and containing the point P(1,2, —3);

(b) parallel to 4x + 3y — 2z = 11 and containing the point Q(2, —1, 3).
Find the (parametric) equation of the line L:

(a) through the point P(2,5,—3) and in the direction of v = 4i — 5j + 7k;
(b) perpendicular to the plane 2x — 3y 4+ 7z = 4 and containing P(1, —5,7).

Consider the following curve C in R? where 0 < 7 < 5:
F(t) =£i—j+ (2t - 3)k
(a) Find the point P on C corresponding to ¢t = 2.

(b) Find the initial point Q and the terminal point Q.
(c) Find the unit tangent vector T to the curve C when ¢ = 2.

Consider a moving body B whose position at time ¢ is given by R(¢) = i + £3j + 2¢k. [Then V(¢) = dR(¢)/dt
and A(t) = dV(t)/dt denote, respectively, the velocity and acceleration of B.] When ¢z = 1, find for the
body B:

(a) position; (b) velocity v; (c) speed s; (d) acceleration a.
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1.59. Find a normal vector N and the tangent plane H to each surface at the given point:

(a) surface x*y + 3yz = 20 and point P(1,3,2);
(b) surface x*> 4 3y? — 572 = 160 and point P(3, -2, 1).

Cross Product

1.60. Evaluate the following determinants and negative of determinants of order two:

@ 25 3 -6 4 2
V13 6" (1 -4 7 -3

6 4 1 -3 8 -3
®) _‘7 50 _‘2 4" _'—6 fz‘

1.61. Given u=3i—4j+2k, v=2i+5j—3k, w=4i+7j+2k, find:

(@) uxw, (b) uxw, ©) vxw.

1.62. Givenu=[2,1,3, v=[4,-1,2], w=[1,1,5], find:

(@) uxw, b)) uxw, ©) vxw.

1.63. Find the volume V of the parallelopiped formed by the vectors u, v, w appearing in:
(a) Problem 1.61 (b) Problem 1.62.

1.64. Find a unit vector u orthogonal to:
(@ v=[l,2,3]and w=[1,—-1,2];
(b) v=3i—j+2kand w=4i—-2j—k.

1.65. Prove the following properties of the cross product:

(@ uxv=—(vxu) d ux(w+w)=mxv)+ (uxw)
(b) u x u=0 for any vector u e (v+w)xu=(vxu)+(wxu)
(© (ku) x v="k(ux v) =ux (kv) (f) (uxov)yxw=@w-wv—(v-wu

Complex Numbers
1.66. Simplify:
1 942i

@ (G-7)09+2); ® (G-5); (© T @

© (1—i).

1 243 1 \2
1.67. Simplify: - : 15 25 34, )
67. Simplify: @ 7 ®) F/z © &S @ (3—i)

168. letz=2—5iand w="7 + 3i. Find:

@ v+w; (B zw;  © z/wi @ zZws () |z, [wl|

1.69. Show that for complex numbers z and w:

(@ Rez=1(z+2), () Imz=1(z—2), () zw=0 implies z=10 or w=0.

Vectors in C"
1.70. Letu = (1+7i, 2—6i) and v= (5 —2i, 3 —4i). Find:
@ u+v (b)) B+du () 2iu+@A+7)v d) u-v (e) |u| and |v].
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1.71. Prove: For any vectors u, v,w in C":
@ (w+v)-w=u-wt+v-w, b) w-(u+v)=w-u+w-o.

1.72. Prove that the norm in C” satisfies the following laws:

[N;] For any vector u, ||u|| > 0; and ||u|| = O if and only if u = 0.
[N,] For any vector u and complex number z, ||zu| = |z||u|.
[N;] For any vectors u and v, ||u + v|| < ||ul| + ||v]|.

ANSWERS TO SUPPLEMENTARY PROBLEMS

141. (a) (-3,-16,10); (b) (6,1,35); (¢) —3,—12,8; (d) 21,35, V14;
© -3/V2IV35% () V6 (@ -2 G5D=(-%-5-3

1.42. (Column vectors) (a) (—1,7,—22); (b) (-1,26,-29); (¢) —15,-27,34;
@ v26,v30; (o) —15/(v26V30); (f) V86 (@ —Pu=(-1,—%,-3)

1.43. (a) (—7,-14,13,45,0); (b) (20,-29,22,16,-23); () —6; (d) +/90,/95;
e —&uv;  (f) V197

144. ) (5/V74, —1/V74); ) (G, 3, -3, 9 (© (6/V133, —4/V133, 9/V/133)
1.45. (a) 3, 13, V120, 9

146. (a) x=3, y=5; ®) x=0, y=0, and x=-2, y=—4

147. x=-3, y=3, z=3

1.48. (a) v=S5u; —uy; (b) v=16u; —23u,

1.49. v=3u; —u, +2u;

150. (@ 6; (b 3 (0 3

151. (@ v=[-1,-9,2; (b) [2,3,6,—10]

1.52. (a) 2x; +3x, — 5x; + 6x, = 35; (b) 2x; —3x, +5x3 —Tx, = —16

1.53. (&) [2t+1, —7t+2, 6:+1, —11t+2]; (b) [2r+1, 4r+1, 6t+3, —8t+ 3]
1.54. (a) —-23j+13k; (b)) 9i—6j—10k; (c) —20,—12,37; (d) +29,/38,v69
1.55. (a) 3x—4y+5z=-20; (b) 4x+3y—2z=-1

1.56. (a) [4r+2, —5¢+5, 7t—3]; (b) [2t41, —3t—5, Tt+7]

157. () P=F2)=8i—4j+k (b) Q=F(0)=-3k Q =F(5) = 125i — 25j + 7k;
(© T=(6i—2j+Kk)/Val

1.58. (a) i+j+2k (b) 2i+3j+2k; () V17; () 2i+6j

1.59. () N=6i+7j+9k 6x+7y+9z=45  (b) N=6i—12j— 10k, 3x—6y—5z=16





